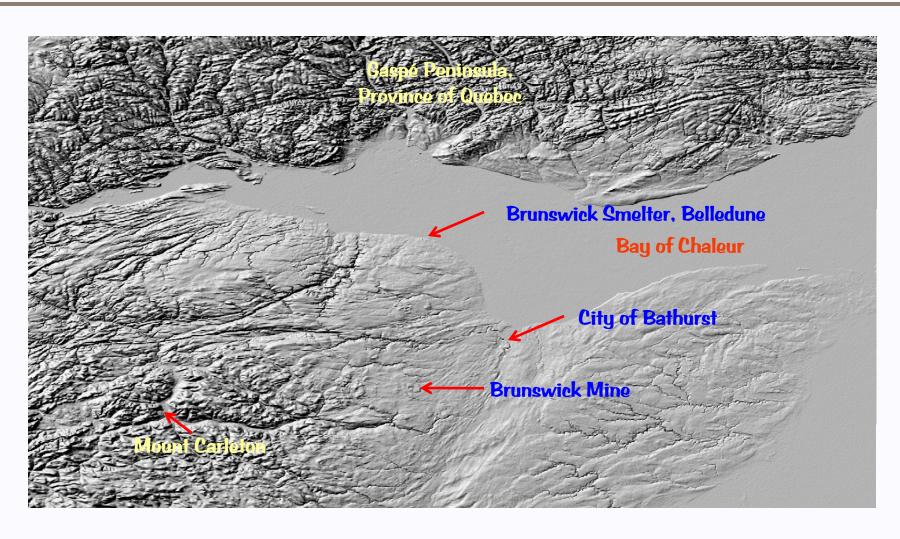
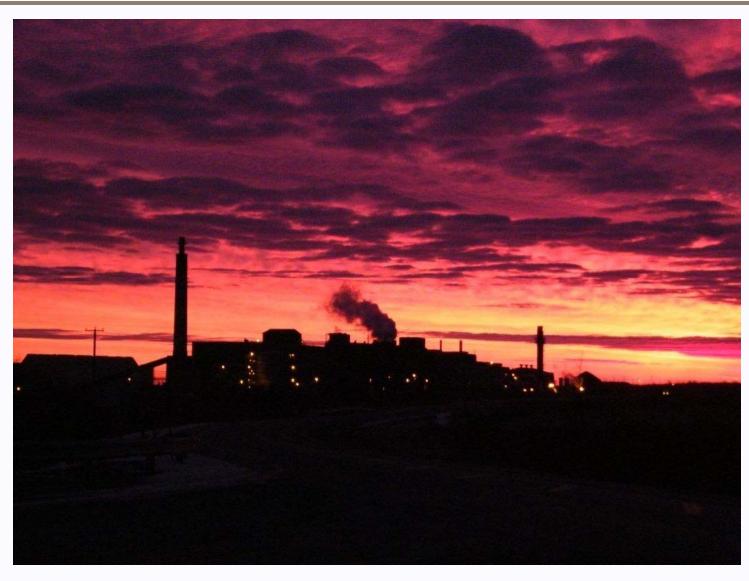


The Challenges and Benefits of XRF Spectrometry at Xstrata Zinc Brunswick Smelter

Denis Foulem
Brunswick Smelter, Belledune, New Brunswick, Canada

20th Anniversary Symposium for the Short Course of Modern X-Ray Spectrometry, University of Western Ontario


Where is Brunswick Smelter?


Northern New Brunswick

Brunswick Smelter

Brunswick Smelter Overview

The Lab

Philips PW2400 XRF spectrometers

- Two units, built in 1992, equipped with PW2510 sample changers
- X-Ray Tube rating: 20 to 60 kV, 10 to 125 mA
- Operating medium: vacuum or helium
- Crystals: PX1, PX4, LiF 200, LiF 220, PE 002, Ge 111

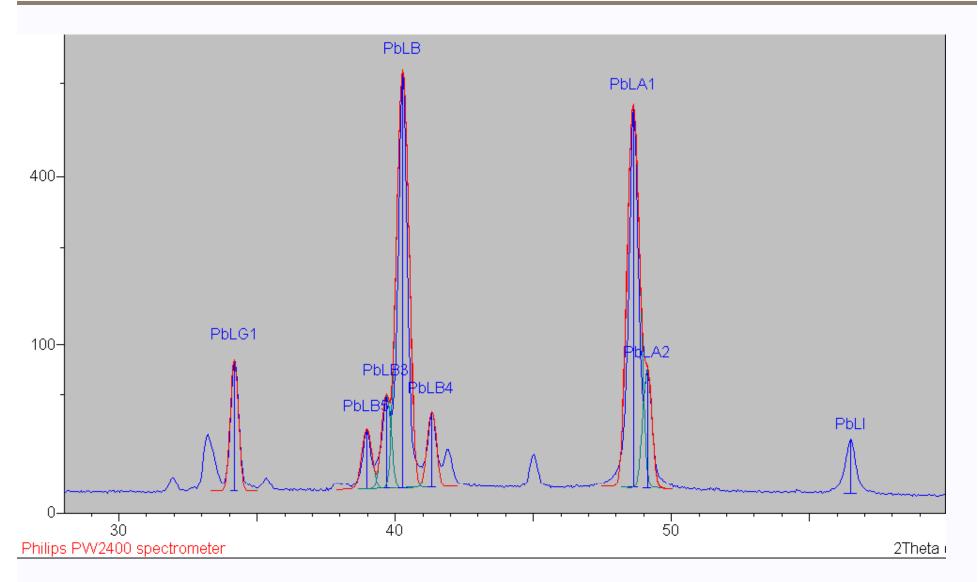
Never a dull moment!

XRF and the Pb Smelting Business

 Good for XRF: Pb is present in practically all samples!

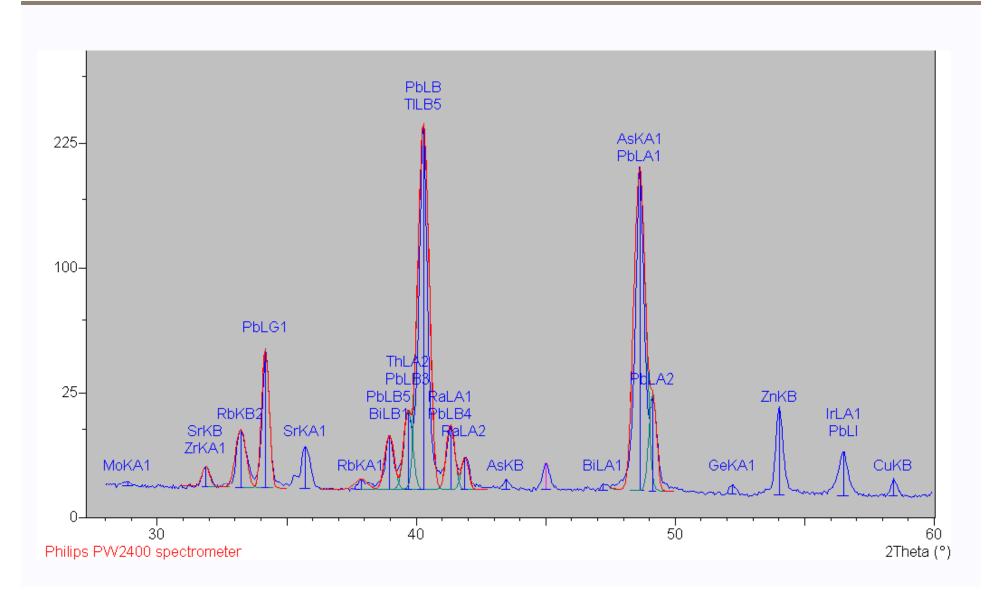
Xstrata

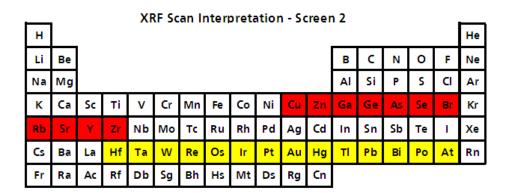
XRF and the Pb Smelting Business



 Bad for XRF: Pb is present in practically all samples!

Xstrata


Pb Effects on Full XRF Scan Spectra


Uncorrected Scan Interpretation

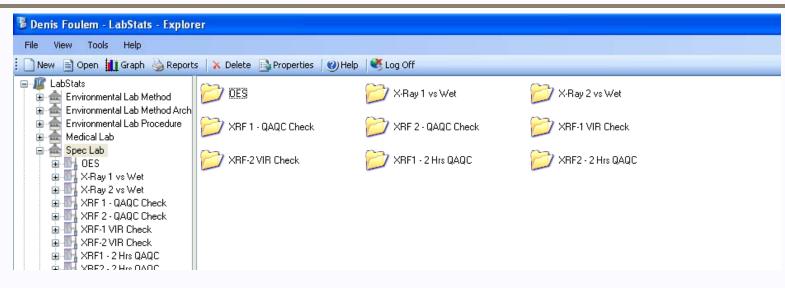
Directives for Scan Interpretation

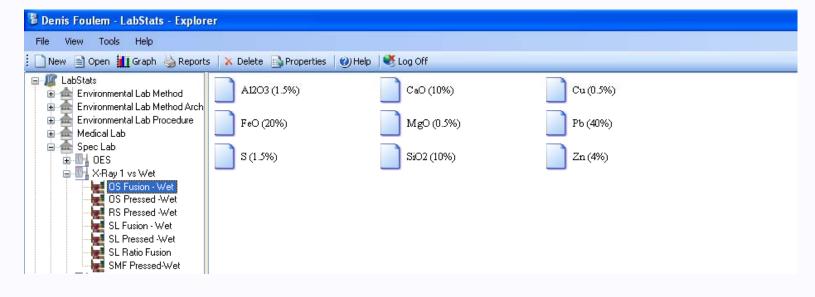
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Th	Pa	C	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

- K Lines
- M Lines

Directives

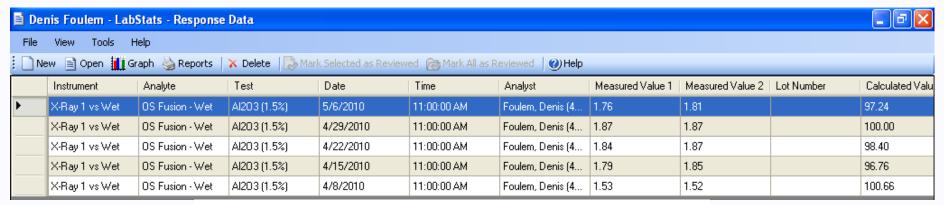
- Pb Lα < Pb Lβ
- At 45° there is a Pb peak not assigned by the software; ignore it.
- Ignore Zr Kα as it occurs at the same location as a Pb line; if Zr Kß is present use only that line.
- Delete As Kaif As KB is absent.
- Se KB won't appear due to the presence of Pb; ignore it.
- Readjust all peaks associated with the "Pb Hand" located left of center.
- As KB2 is not in sofware; ignore it.
- Br Kα is on peak at the far left on the "Pb Hand"; assign it as such only if Br Kß is present at left of "Pb Hand".
- Bi Lß is also on far left peak of "Pb Hand"; make sure it isn't overevaluated by checking Bi Lα located
 on left side of Pb peak at right (calculate Lß peak height based on expected % peak size compared
 to Lα).
- Ir L peak is usually spurious, actually a Pb peak; use 'Delete Element' feature to remove it.
- There is no Hg Lß line.
- Suspect the presence of Ge K lines when analyzing Pb Sulphate samples
- Sr Kα near unidentified Pb peak; use only if Sr Kß is present. Note: Sr Kß cannot be used as it occurs at the same location as a Pb line, as well as Zr Kα.
- Ignore Rb Kα at 38° unless it is very strong, i.e. higher than the Pb peak at its right.
- Small Pb peak at right of "Pb Hand" (near 42°) is not assigned by the software; ignore it.
- Identify Hg Lα only if it's well-defined and its presence is plausible, i.e. the material analyzed isn't a high-temperature residue.
- If the As Kβ peak is especially strong, a secondary As Peak will appear at 43° but is not assigned by the software; ignore it.
- If both Pb and Bi are present, ignore peak at 39° as it corresponds to both Pb Lβ5 and Bi Lβ1 peaks.

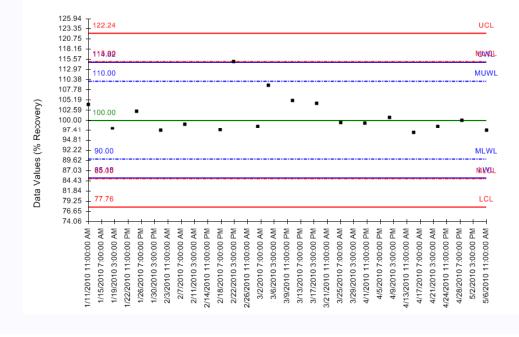

Pb Effects on Production Samples



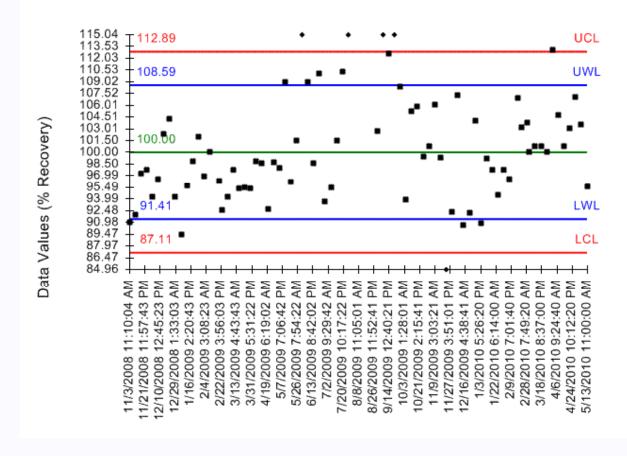
SuperQ / quantitative (system set-up) - [Application - SINTER]									
🕻 File System A	pplication Mor	nitor	Windov	v Help					
<u>R</u> 🗟 🔗		€	3	· į					
✓ % ×			êê						
Application items	_				<u> </u>				
○ <u>G</u> eneral			ole desc	•	O <u>Q</u> ua	ntitative	program		
 Identification sch 	ieme 📵	Appli	cation (compounds	O Q <u>u</u> al	itative p	rogram		
Conditions	C	A <u>p</u> pli	cation (channels					
Application compour	nds								
Normalise			Normali	se to (%): 100.	00	Lock r	normalise		
Compound	Formula	El.	Layer	Source	Unit	Dec.	Minimum	Maximun	
OSAg	Calc. Func.			Calc. Func.	%	3			
OSAI203	Calc. Func.	_		Calc. Func.	%	2			
OSAs	Calc. Func.	_	_	Calc. Func.	%	2			
OSBi	Calc. Func.	_		Calc. Func.	%	2			
OSCaO	Calc. Func.	_		Calc. Func.	%	2	5.000	15.0	
OSCd	Calc. Func.	-		Calc. Func.	%	2		2.0	
OSCu OSFeO	Calc. Func.	-	_	Calc. Func.	%	2	10.000	2.0 25.0	
OSK	Calc. Func. Calc. Func.	-		Calc. Func. Calc. Func.	%	2	10.000	25.0	
DSMgO	Calc. Func.	+-		Calc. Func.	1%	2			
DSNa	Calc. Func.	+		Calc. Func.	1%	2			
DSPb	Calc. Func.			Calc. Func.	1%	2	30.000	50.0	
OSS	Calc. Func.	_	_	Calc. Func.	1%	2	30.000	3.5	
DSSb	Calc. Func.		_	Calc. Func.	1%	2		0.0	
OSSiO2	Calc. Func.			Calc. Func.	1%	2	5.000	15.0	
OSZn	Calc. Func.			Calc. Func.	%	2	5.555	5.0	
4g	Ag	Ag		XRF	%	3			
AI203	Al203	ΑĬ	1	XRF	%	2			
4s	As	As	1	XRF	%	2			
3i	Bi	Bi		XRF	%	2			
CaO	CaO	Ca		XRF	%	2			
Cd	Cd	Cd		XRF	%	2			
Cu	Cu	Cu		XRF	%	2			
FeO .	FeO	Fe		XRF	%	2			
K	K	K		XRF	%	2			
MgO	MgO	Mg		XRF	%	2			
Na	Na Pb	Na Pb		XRF XRF	%	2			
РЬ		TOL	. 1	VOE	19	i 🤼			

QAQC for XRF





Data Comparison and Graphs


X-Ray 1 vs Wet - OS Fusion - Wet - Al2O3 (1.5%)

Scatter effect on Sulfur (Example)

X-Ray 1 vs Wet - OS Fusion - Wet - S (1.5%)

Lab Stats© Statistics on the fly

File View Help				
🖹 Open 🚻 Grap	h 🍓 Print 🕦 Properties	(2) Help		
Laboratory	Instrument	Analyte	Test	
Spec Lab	XRF 1 - QAQC Check	HGP Dust	TI (8.2%)	
Spec Lab	XRF1 - QAQC Check	HGP Dust	Zn (0.34%)	
Spec Lab	XRF 1 - QAQC Check	OS Fused	As (0.57%)	
Spec Lab	XRF 1 - QAQC Check	OS Fused	Cd (0.18%)	
Spec Lab	XRF 1 - QAQC Check	OS Fused	K (0.32%)	
Spec Lab	XRF 1 - QAQC Check	OS Fused	ЅЬ (0.20%)	
Spec Lab	XRF1 - QAQC Check	Return Sinter	As (0.72%)	
Spec Lab	XRF 1 - QAQC Check	Return Sinter	Cd (0.24%)	
Spec Lab	XRF 1 - QAQC Check	Return Sinter	FeO (19.63%)	
Spec Lab	XRF1 - QAQC Check	Return Sinter	MgO (0.69%)	
Spec Lab	XRF 1 - QAQC Check	Return Sinter	РЬ (37.16%)	
Spec Lab	XRF 1 - QAQC Check	Return Sinter	Zn (2.7%)	
Spec Lab	XRF1 - QAQC Check	Slag Fused	As (0.26%)	
Spec Lab	XRF 1 - QAQC Check	Slag Fused	Cd (0.01%)	
Spec Lab	XRF1 - QAQC Check	Slag Fused	K (0.68%)	
Spec Lab	XRF 1 - QAQC Check		Na (1.98%)	
Spec Lab	XRF 1 - QAQC Check	SMF	CaO (10.15%)	
Spec Lab	XRF 1 - QAQC Check		Cu (0.67%)	
Spec Lab	XRF 1 - QAQC Check	SMF	FeO (17.82%)	
Spec Lab	XRF 1 - QAQC Check	SMF	РЬ (36.03%)	
Spec Lab	XRF 1 - QAQC Check	SMF	SiO2 (9.49%)	
Spec Lab	XRF 1 - QAQC Check	SMF	Zn (2.43%)	
Spec Lab	XRF 2 - QAQC Check		As (19%)	
Spec Lab	XRF 2 - QAQC Check	Cu Speiss	Fe (0.91%)	
Spec Lab	XRF 2 - QAQC Check		РЬ (15.13%)	
Spec Lab	XRF 2 - QAQC Check	Cu Speiss	Sb (1.55%)	

Statis	<u>tics</u>	Respo Data	<u>nse</u>	<u>Control</u> <u>Data</u>
Avera	ge	102.80%		99.99%
Stand	ard Deviation	2.62		2.00
% Rel Devia	lative Standard tion:	2.54		2.00
	Precision Decision			
	F Calculated	0.0000 3.7870		
	F Lookup Value			
	Degrees of Freedom (Response)		7	
	Degrees of Freedom (Conf	trol)	41	
	Significant Shift in Precision	n?	No	
	Bias Decision			
	Students t Test for Bias		3.0288	
	t Lookup Value		2.3646	
	Degrees of Freedom		7	
	Significant Bias		Yes	
	Persuasive Bias		Yes	

Conclusion

XRF Spectrometry at Xstrata Zinc Brunswick Smelter:

- Multitasking
- Validation of data by Wet Lab checks and data management
- Maintain accuracy of assays
- Perform full XRF scans on a regular basis
- Troubleshooting
- Questions?